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Introduction

Sketched high-density fully Integrated GHz/THz platform
for Machine-to-Machine (M2M) and Internet of Things (IoT)

- Interconnectivity of 5G Systems (5B people & 50B things) -

Antenna

Demodulator
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DSP

“Good”, “Bad” and “Ugly”

Mainstream planar techniques

• Antenna design vs. array design (circuit effect)
d d d d l
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• Integrated and easy‐to‐design radiating element
• Low‐cost and small form factor
• Parasitic coupling and unwanted radiation
• Difficult‐to‐achieve large array efficiency
• Sensitive bandwidth and millimeter‐wave hurdle
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Typical Examples and Evolution

SIW l  < i t iL  > i  t ti *H  
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• SIW loss < microstrip
• PCB process
• Light weight/low-profile

* P. S. Hall and C. M. Hall, “Coplanar corporate feed effects in microstrip patch array
design,” Proc. Inst. Elect. Eng., vol. 135, pt. H, pp. 180–186, June 1988.

• Loss -> gain saturation*
• Radiation loss -> SLL 

degradation and gain loss

• Heavy 
• Bulky 
• Need annual assembly

Evolution of GHz/THz Technologies

1st Generation
2nd Generation

3rd Generation
4th Generation

Dielectric waveguide 
Finline

MHMIC and 
MMIC

Microwave 
integrated Circuits 

(MIC )Metal waveguide 
and coaxial cable 

Multilayered 
LTCC/MMIC
MEMS-RFIC

(MICs)

What‘s next ?  ...... 
Substrate Integrated Circuits (SICs)!
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Substrate Integrated Waveguide (SIW) Techniques

(a) (b) (c)

(d) (e) (f)

Synthesized Waveguides and Substrate Integrated Circuits (SICs)
non-planar structure in planar form

SICs-Related IEEE Publications
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November Issue, Microwave Journal, 2011

Interfaces/Transitions of Dissimilar Structures
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Waveguide ↔ SIIGMicrostrip ↔ SIW

CPW ↔ SIW CPW ↔ SIIG
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Basic SIW-based Antenna Elements
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Integrated SIW Antennas and Arrays

Substrate Integrated Parabolic Reflector and Multibeam Antenna 

Substrate Integrated R-KR Lens

Port B2 Port B5 Port B8
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60-GHz High-Gain SIW Antenna Array System

First Vertically Stacked Yagi-like Antenna

 Designed at 5.8 GHz
 Measured gain:  11 dBi
 Bandwidth: 17%  Bandwidth: 17% 
 Elements can be: dipole, patch…
 Different polarisations can be used
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Photography of the prototype 
(80x80x29mm3) Radiation Pattern
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60 GHz Vertically Integrated Yagi-like Antenna

 Bandwidth: 4.2%
 Circular patch is used (driver & director)

M d i  11 dB Measured gain: 11 dB
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Prototype Radiation Pattern

Vertically Stacked Yagi-like Antenna Array

 SIW feeder
 4x4 array of Yagi antenna at 60 GHz
 Array branch spacing  ~0 9λ Array branch spacing  ~0.9λ
 Air slots used to reduce coupling
 Metalized slot around patch structure

18
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Prototypes and Results

 Bandwidth: 10% à 60 GHz
 Size: 28 x 24 x 2 4 mm Size: 28 x 24 x 2.4 mm 
 Measured gain: 18 dBi (simulated: 19dBi)
 High SLL (can be reduced)
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Radiation Pattern

Angled elements

Radiation Pattern

98 GHz Vertically Stacked Yagi-like Array

 Wide bandwidth (7.5 GHz at 98 GHz)
 19 dBi Gain
 Stable gain & radiation pattern
 Estimated 90% radiation efficiency
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Radiation patterns at 98.75 GHz
(sold: measured, dashed: simulated)Gain variation
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Multi-Dimensional Lego-Style Design
Compelling advantages of multilayered and 3-D structures:
 Small footprint
 Higher array gain
 Different polarization
 Wide bandwidth
 Multi-beam
 Possible E-plane expansion with Lego-style design

E-band array prototype 70-105 GHz integrated horn
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SIW-Lego Building Blocks

SIW Feeder for Fermi Tapered Slot Array

 Bandwidth of 21 1% at 35GHz
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 Bandwidth of 21.1% at 35GHz
 Design spacing at 0.68 λ
 Measured gain of 23.4 dBi (simulated 24.5 dBi)
 SLL of 27 dB
 Bandwidth of 5.3° in E-plane
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3-D SIW Fermi Tapered Slot Array

 Bandwidth: 21.1%
 Gain: 27 dBi.
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 SLL of 26 dB in two planes.
 Beamwidth of 5.15° in E-plane and 6.20°

in D-plane (45°).
 Network efficiency of 61%
Weight: 175g

Two-Dimensional SIW Scan Array Antenna

 Frequency scan in one plane
 Phase shift control in the 

orthogonal planeorthogonal plane

Leak-wave antenna 

24

Schematic for simple 2D scanning

Simulated SIW Rotman lens diagram
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Leaky-Wave Antenna (LWA) Block

1 0  1 0 
 Angle of the main beam is a function of

the first radiating space harmonic

 Gain increases with f due to a larger
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Reflection cancellation forward wave LWA
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2-D Scan Array Antenna Element
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Transmission

Proposed E2H corner
H fields coupling through corner for TE10 mode

 Measured bandwidth (return loss ≤ - 15dB) 

E plane guide
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Reflection

Simulated (dashed) & measured (solid)

Measured bandwidth (return loss ≤ 15dB) 
of 11.9% covers frequency range from 71 
GHz to 80 GHz 

 Measured insertion loss is ≤ -2.3 dB over 
the entire bandwidth 
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2-D Scan Array Antenna Prototype

Multibeam antenna can efficiently
cover a solid angle of (49°,84.5°)
to (120° 70°) with multiple beams 5
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Measured H-plane patterns excited
Input port 1

Measured E-plane patterns
excited from ports 1-7 at 75 GHz

Input port 4

Different SIW-based Beamforming Networks

Butler Matrices Nolen Matrices

Without cross Ultra wideband (30%) Beam squint control Delay compensation

28
K. Wu, et al., “Substrate integrated millimeter-wave and terahertz antenna technology,” Proceedings of the IEEE, 
pp. 2219-2232, Vol. 100, No. 7, July 2012
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Multi-Functional & Multi-Format Schemes

 Dual-polarization systems

 Circular polarization techniques Circular polarization techniques

 Millimeter-wave MIMO systems

 Active and smart antennas

 Tunable and reconfigurable antennas and arrays

 Multi band and multi beam systems Multi-band and multi-beam systems

 Mixed waveguide design platforms

 Hybrid radio and radar antenna architectures
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Millimeter-Wave (60 GHz) Smart Array System

59.5 GHz

BPF

60GHz LNA

Sub-harmonically mixer

Coupler

BPF

LNA

Coupler

BPF

LNA

LO

Coupler

detector

4x4 Butler Matrix

switch

29 GHz

Control 
circuits

IF:1.5 GHzLO:

IF:1.5 GHz
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Dual-Linearly Polarized Antenna Design

Single Linearly Polarized Array Dual Linearly Polarized Array

31

V-pol and H-pol High-Gain Antennas 

32

V-Polarization H-Polarization
Experimental Prototype
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Simulated and Measured Results
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V-Polarized antenna (H plane)

-90 -60 -30 0 30 60 90
-30

-20

o

N
or

m
al

iz
ed

 

-90 -60 -30 0 30 60 90
-30

-20

o

N
or

m
al

iz
ed

 

H-Polarized antenna (H plane)
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30 GHz Multi-Dimensional Scan Phased Array System

34
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Conclusion and Future Outlook

 Recent achievements are presented in connection with the
design and development of low-cost SIW antenna and array
architectures.

 Multi-dimensional small-footprint and high-gain antenna arrays
are shown for millimeter-wave applications.

 Vertically expanded LEGO building blocks and multi-
format/multi-functional design techniques are demonstrated for
various system developments

35

various system developments.

 Future GHz and THz systems will benefit from this research with
a further expansion of SICs-based mixed waveguide techniques
in conjunction with emerging materials.

Example of Stacked Multilayered SIW Integrated Antenna Arrays

36
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Illustrative LEGO-style Design of an Antenna Array System
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