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Introduction

Sketched high-density fully Integrated GHz/THz platform
for Machine-to-Machine (M2M) and Internet of Things (loT)

- Interconnectivity of 5G Systems (5B people & 50B things) -
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“Good”, “Bad” and “Ugly”

Mainstream planar techniques

* Antenna design vs. array design (circuit effect)

* |ntegrated and easy-to-design radiating element
e Low-cost and small form factor

e Parasitic coupling and unwanted radiation
 Difficult-to-achieve large array efficiency

e Sensitive bandwidth and millimeter-wave hurdle




Typical Examples and Evolution

e Heavy » Loss -> gain saturation* e SIW loss < microstrip
* Bulky * Radiation loss -> SLL » PCB process
* Need annual assembly degradation and gain loss  Light weight/low-profile

* P. S. Hall and C. M. Hall, “Coplanar corporate feed effects in microstrip patch array
design,” Proc. Inst. Elect. Eng., vol. 135, pt. H, pp. 180-186, June 1988.

Evolution of GHz/THz Technologies

Dielectric waveguide 5

1st Generation Finli
2nd Generation inline—s
3rd Generation

4th Generation

Microwave
ﬂk - integrated Circuits MMIC
Metal waveguide (MICS) Multilayered

and coaxial cable LTCC/MMIC

MEMS-RFIC
What's next ? ......
Substrate Integrated Circuits (SICs)!




Substrate Integrated Waveguide (SIW) Techniques

(d) (e) ]

Synthesized Waveguides and Substrate Integrated Circuits (SICs)
non-planar structure in planar form
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Interfaces/Transitions of Dissimilar Structures

Microstrip <> SIW

Courant &lectrique

- Champ magnétique

CPW « SIW CPW < SIIG




Basic SIW-based Antenna Elements

22 3 /4
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ALTSA leaky-wave antenna

Basic SIW-based BFN Building Blocks




Integrated SIW Antennas and Arrays

Substrate Integrated Parabolic Reflector and Multibeam Antenna
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60-GHz High-Gain SIW Antenna Array System

Relative Gain (dB)
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First Vertically Stacked Yagi-like Antenna

Designed at 5.8 GHz
Measured gain: 11 dBi
Bandwidth: 17%

Photography of the prototype
(80x80x29mm3)

Elements can be: dipole, patch...
Different polarisations can be used

Amplitude (dB)

-60 -30 0 30 60 a0
Angle & (degree)
Radiation Pattern
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60 GHz Vertically Integrated Yagi-like Antenna

= Bandwidth: 4.2% ” rp—
= Circular patch is used (driver & director) R Layer s
= Measured gain: 11 dB 2 o
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Prototype Radiation Pattern
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Vertically Stacked Yagi-like Antenna Array

SIW feeder

4x4 array of Yagi antenna at 60 GHz
Array branch spacing ~0.9A

Air slots used to reduce coupling
Metalized slot around patch structure
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Prototypes and Results

= Bandwidth: 10% a 60 GHz

= Size: 28 x 24 x 2.4 mm

= Measured gain: 18 dBi (simulated: 19dBi)
= High SLL (can be reduced)
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98 GHz Vertically Stacked Yagi-like Array
[ ]

Wide bandwidth (7.5 GHz at 98 GHz)
19 dBi Gain

Stable gain & radiation pattern
Estimated 90% radiation efficiency
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mmms Without loss
= With dielectric and metal losses
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Gain variation (sold: measured, dashed: simulated)
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Multi-Dimensional Lego-Style Design

Compelling advantages of multilayered and 3-D structures:

< Small footprint -
= Higher array gain = q
< Different polarization T ~

< Wide bandwidth
& Multi-beam E-band array prototype ~ 70-105 GHz integrated horn

& Possible E-plane expansion with Lego-style design

SIW-Lego Building Blocks

SIW Feeder for Fermi Tapered Slot Array
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3-D SIW Fermi Tapered Slot Array

= Bandwidth: 21.1%

= Gain: 27 dBi.

= SLL of 26 dB in two planes.

= Beamwidth of 5.15° in E-plane and 6.20°
in D-plane (45°).

= Network efficiency of 61%

= Weight: 175g

23
Two-Dimensional SIW Scan Array Antenna
= Frequency scan in one plane
= Phase shift control in the
orthogonal plane
Schematic for simple 2D scanning ' v 5’
S, ﬁ:__:AT—:_ - !.J
Dummy ports
24

Simulated SIW Rotman lens diagram
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Leaky-Wave Antenna (LWA) Block

= Angle of the main beam is a function of
the first radiating space harmonic

= Gain increases with f due to a larger
electrical length of antenna at higher f

T T Y P PP A A
. L .

Peak gain(dB)

L ]

L LT R L R R L eI

Reflection cancellation forward wave LWA

Frequency(GHz)

58 62 66 70 74 78
Frequency(GHz)

Calculated scanning angle and peak gain
25

2-D Scan Array Antenna Element

Eplane  E plane guide

h LTI

H fields coupling through corner for TE,ymode

Proposed E2H corner 0

-10

= Measured bandwidth (return loss < - 15dB)

of 11.9% covers frequency range from 71
GHz to 80 GHz

=  Measured insertion loss is < -2.3 dB over ~40
the entire bandwidth

201 A =

-30

S parameters(dB)
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Simulated (dashed) & measured (solid)
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2-D Scan Array Antenna Prototype

Multibeam antenna can efficiently
cover a solid angle of (49°

84.5°)

°) with multiple beams
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excited from ports 1-7 at 75 GHz

Different SIW-based Beamforming Networks

Nolen Matrices

Butler Matrices

Ultra wideband (30%) Beam squint control Delay compensation

Without cross

K. Wu, et al., “Substrate integrated millimeter-wave and terahertz antenna technology,” Proceedings of the IEEE,

pp. 2219-2232, Vol. 100, No. 7, July 2012




Multi-Functional & Multi-Format Schemes

< Dual-polarization systems

< Circular polarization techniques

& Millimeter-wave MIMO systems

< Active and smart antennas

< Tunable and reconfigurable antennas and arrays
& Multi-band and multi-beam systems

< Mixed waveguide design platforms

< Hybrid radio and radar antenna architectures

29

Millimeter-Wave (60 GHz) Smart Array System
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| 4x4 Butler Matrix |
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Dual-Linearly Polarized Antenna Design

Single Linearly Polarized Array Dual Linearly Polarized Array

3

> =
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31

V-pol and H-pol High-Gain Antennas

V-Polarization H-Polarization

Experimental Prototype

32
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Simulated and Measured Results
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30 GHz Multi-Dimensional Scan Phased Array System
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Conclusion and Future Outlook

= Recent achievements are presented in connection with the
design and development of low-cost SIW antenna and array
architectures.

< Multi-dimensional small-footprint and high-gain antenna arrays
are shown for millimeter-wave applications.

< Vertically expanded LEGO building blocks and multi-
format/multi-functional design techniques are demonstrated for
various system developments.

< Future GHz and THz systems will benefit from this research with
a further expansion of SICs-based mixed waveguide techniques
in conjunction with emerging materials.
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Example of Stacked Multilayered SIW Integrated Antenna Arrays

Parasitic elements to control: gain,
bandwidth, polarization .

Antenna feed

Disfributed amplifiers
and phase shifters

Six port junction orbeam
forming network

Baseband and DSP Cards

36
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lllustrative LEGO-style Design of an Antenna Array System

Lego antenna element

Insertion slot

Antenna feed
and £
base of the array
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