

Progress in Reflectarray Antenna Research: From Enhanced Frequency Features to Advanced Radiation Capabilities

Fan Yang Microwave and Antenna Institute Electronic Engineering Department, Tsinghua University

OUTLINE

- Introduction of reflectarray antennas
- Reflectarray analysis and synthesis methods
- RA with enhanced frequency features
- RA with advanced radiation capabilities
- Conclusions

Antenna Classifications

Low gain antenna

- 1. Gain < 10 dBi
- 2. Examples:
 - * Dipole and loop
 - * Microstrip and slot
- 3. Applications: cell phone, laptop, PDA, WLAN, etc.

Middle gain antenna

- 1. 10 < Gain < 20 dBi
- 2. Examples:
 - * Horn antenna
 - * Spiral antenna
- 3. Applications: base stations, antenna & EMC measurement

High gain antenna

- 1. Gain > 20 dBi
- 2. Examples:
 - * Reflector, lens
 - * Antenna array
- 3. Applications: space and satellite comm.

High Gain Antenna Development

Parabolic Reflector

• Simple, well developed

Bulky, limited beam scan

Microstrip Array

○ Low profile, flexible beams
➢ Power loss in the feed network

Images are from www.deepspace.jpl.nasa.gov and www.activefrance.com/Antennas

New high-gain antennas

Reflectarray

Low profile
Low mass
Easy to fabricate
Easy for circuitry
integration
Element phase:
individual control

Beam-scanning reflectarrays
Amplifying reflectarrays
Multi-beam reflectarrays
Contour-beam reflectarrays

Reflectarray Antennas

- 1. R. E. Munson and H. Haddad, "Microstrip reflectarray for satellite communication and RCS enhancement and reduction", U.S. patent 4,684,952, August 1987.
- 2. J. Huang, "Microstrip reflectarray antenna for the SCANSCAT radar application", JPLPublication No. 90-45, Nov. 15, 1990.
- 3. D. M. Pozar and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size", Electronics Letters, April 1993.

Phasing Elements in Reflectarrays

Reflectarray Applications

OUTLINE

- Introduction of reflectarray antennas
- Reflectarray analysis and synthesis methods
- RA with enhanced frequency features
- RA with advanced radiation capabilities
- Conclusions

Reflectarrays Design Overview

Design goals:

- Radiation patterns
- Beam direction
- Directivity
- Gain and efficiency
- Bandwidth
- Axial ratio

Design parameters:

- Aperture size (D), feed location (f/D), and feed pattern (q value).
- Phase elements: patch, ring, dipole; substrate thickness & permittivity.
- Phasing approaches: variable size, element rotation, delay lines.

Reflectarray Design Engine

Analysis Tools

Planar and Conformal Systems

- Radiation Analysis
 Array Theory
 Aperture Field
 Full-wave
- Efficiency Analysis
 Illumination efficiency
 Spillover efficiency
- Phase Error Analysis

Optimization Tools

Phase-only Optimizations

 Alternating Projection Method (APM)

Particle Swarm
 Optimization (PSO)

Measurement Tools

Near-Field Measurements

Spectral NTFF Principal plane pattern cuts

 Microwave Holography Measured aperture fields for accurate simulations

Element Analysis

Full-wave analysis of unit cell:

Infinite array approach: in-house FDTD program, Ansoft Designer, HFSS, CST, FEKO ...

> Incident angle, phase range, phase quantization, quasi-periodic

Efficiency Analysis

Aperture efficiency (η_A) :

$$\eta_{A} = \eta_{s} \times \eta_{t} \times \eta_{p} \times \eta_{o}$$

- η_s spill over η_i - illumination η_t - taper
- η_p phase

Spillover loss Illumination taper

Radiation Pattern Analysis

- Array theory approach
- Aperture field method
- Full wave simulation

$$\vec{E}(\hat{u}) = \sum_{m=1}^{M} \sum_{n=1}^{N} \vec{A}_{mn}(\hat{u}) \cdot \vec{I}(\vec{r}_{mn}),$$
$$\hat{u} = \hat{x} \sin \theta \cos \varphi + \hat{y} \sin \theta \sin \varphi + \hat{z} \cos \theta$$

$$\begin{bmatrix} E_x^{ref}(m,n) \\ E_y^{ref}(m,n) \end{bmatrix} = \begin{bmatrix} \Gamma_{xx} & \Gamma_{xy} \\ \Gamma_{yx} & \Gamma_{yy} \end{bmatrix} \begin{bmatrix} E_x^{inc}(m,n) \\ E_y^{inc}(m,n) \end{bmatrix}.$$

Reflectarray Design Roadmap

OUTLINE

- Introduction of reflectarray antennas
- Reflectarray analysis and synthesis methods
- RA with enhanced frequency features
 - Broadband reflectarrays
 - Multi-band reflectarrays
- RA with advanced radiation capabilities
- Conclusions

Bandwidth of Reflectarrays

- □ Printed reflectarray has an inherent **narrow bandwidth**.
- □ Bandwidth of a microstrip reflectarray is limited primarily by two factors.

1) Bandwidth of Elements

 $\circ\,$ A micorstrip patch element generally has a bandwidth of about 3 to 5 %.

Broadband Sub-λ RA: Prototypes

Circular aperture (D = 6.275 inch = 17λ @ 32 GHz)

Material

20 mil Rogers 5880 (ϵ_r =2.2) substrate with 0.5 ounce cladding

Broadband Sub-λ RA: Patterns

Gain (dB)	λ/2 array	λ/3 array
Simulation	32.805	32.8355
Measurement	31.4080	31.3670

 $\lambda/2$ array: The 1 dB gain bandwidth is 8.03%. (30.48 GHz to 33.05 GHz) $\lambda/3$ array: The 1 dB gain bandwidth is 10.94%. (30.39 GHz to 33.89 GHz)

Single-Layer Tri-Band RA: Geometry

Printed on a single layer h = 62 mil, $\varepsilon_r = 2.33$.

Element geometry:

- 1. Ka band (32 GHz):
- Circular ring for CP
- Use angular rotation technique for phase compensation
- 2. C band (7.1 GHz):
- Cross dipole for reversed CP
- Adjust the dipole size for phase compensation
- 3. X band (8.4 GHz):
- Split square loop for CP
- Change slot positions for phase compensation

Single-Layer Tri-Band RA: Prototype

A circular reflectarray with a diameter of **0.566 meter**, including:

- 692 cross dipoles at C band (7.1 GHz)
- 685 square rings at X band (8.4 GHz)
- 10,760 circular rings at Ka band (32 GHz)

Single Layer Tri-Band RA: Results

	Peak Gain (dB)	Center Frequency (f _c)	-1 dB Bandwidth (%)	η _a @ f _c (%)
Ka	38.7	31.8	6.3	20.6
Х	29.1	8.4	2.0	26.5
С	28.4	7.1	1.8	38.8

OUTLINE

- Introduction of reflectarray antennas
- Reflectarray analysis and synthesis methods
- **RA with enhanced frequency features**
- RA with advanced radiation capabilities
 - Multi-beam reflectarrays
 - Beam scanning reflectarrays
- Conclusions

Advanced Radiation Performance of RA

An important feature of RA:

Reflection phase of each element can be individually adjusted \rightarrow abundance of design freedom.

Advanced radiation properties:

- Multiple beams from a single feed;
- Contoured beam pattern or shaped beam pattern;
- Wide beam scanning angles.

Direct Methods for MBRA Design

Superposition Approach The field on the reflectarray surface Number of beams $E_{R}(x_{i}, y_{i}) = \sum_{n=1}^{N} A_{n,i}(x_{i}, y_{i}) e^{j\phi_{n,i}(x_{i}, y_{i})}$ $E_{R}(x_{i}, y_{i}) = A_{i}^{Feed}(x_{i}, y_{i}) \cdot \sum_{i}^{N} e^{j\phi_{n,i}(x_{i}, y_{i})}$ $\phi(x_i, y_i) = \angle \left\{ A_i^{Feed}(x_i, y_i) \cdot \sum_{n=1}^N e^{j\phi_{n,i}(x_i, y_i)} \right\}$ **Problem: Amplitude Error**

roblem: Amplitude Error

$$\left|\sum_{n=1}^{N} e^{j\phi_{n(i)}(x_i, y_i)}\right| \neq 1$$

Disadvantage:

- **Reduced gain** (due to side-lobes)
- High side-lobe levels

Geometrical Approach

The reflectarray surface is divided into N sub-arrays each radiating a beam in a given direction.

Problem: Sub-Arrays with Smaller Apertures

Disadvantage:

- ☐ High side-lobe levels
- **Gain reduction and beam widening**

Alternating Projection Method (APM)

❑ APM, or intersection approach, is a robust local optimization search, that is well suited for optimization of large array antennas.

An iterative process that searches for the intersection between two sets.

main beam

20

--- M_U

--- M,

3dB beamwidth

0

θ (degrees)

main beam

-40

-20

0

-5

-10

(gp) -15 |(n) |-20 |1) |-25

> -30 -35 -40 -45 -45

O.M. Bucci, G. Mazzarella, and G. Panariello, "Reconfigurable arrays by phase-only control", *IEEE Trans. Antennas Propag.*, vol. 39, no. 7, pp. 919-925, July 1991.

40

60

 X_0

Μ

P. Nayeri, F. Yang, and A. Z. Elsherbeni, "Design of a single-feed quad-beam reflectarray antenna," *IEEE Trans. Antennas Propag.*, vol. 60, no. 2, pp. 1166 - 1171, Feb. 2012.

Particle Swarm Optimization (PSO)

A powerful global optimization method, developed by Kennedy and Eberhart in 1995.

A stochastic evolutionary optimization technique based on the movement and intelligence of swarms.

It is comparable in performance with other stochastic optimizations such as genetic algorithm (GA), with the added advantage that PSO is much simpler to implement. Very large number of elements

What's the challenge?

- 1. J. Kennedy and R. C. Eberhart, "P Networks IV, Piscataway, NJ. 1995
- 40 million fitness evaluations 2. J. Robinson and Y. Rahmat-Sami IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 397-407, Feb. 2004.
- 3. D. W. Boeringer and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propag., vol. 52, no. 3, pp. 771-779, Mar. 2004.

An Asymmetric MBRA – PSO Method

Beam Scanning Reflectarray Antenna

The phase on the reflectarray aperture can be changed to scan the beam

Bi-Focal Beam Scanning RA

Traditional parabolic RA: > Bi-focal design concept:

Reflectarray Optimizations

BSRA Prototypes & Measurements

32GHz, D=160mm, 848 patch elements

Simulations

Measured

Infrared & THz Reflectarrays

Dielectric reflectarray

Conformal Reflectarray

For $D/R_c = 1$, the gain loss in the conformal designs are:

Concave design ≈ 0.1 dB Convex design ≈ 0.6 dB

OUTLINE

- Introduction of reflectarray antennas
- Reflectarray analysis and synthesis methods
- RA with enhanced frequency features
- RA with advanced radiation capabilities
- Conclusions

Conclusions

The printed reflectarray is a new generation of high gain antenna, and its multitude of capabilities will encourage continuous development and exciting applications in the future. --- John Huang

- Analysis, design, and measurement techniques
- RA with wideband and multi-band features
- RA with multi-beam and beam-scanning operations
- New frontiers: infrared & THz RA, conformal RA, ...
- Exciting applications in space exploration, satellite communications, radar, remote sensing ...

Acknowledgements

> Thanks to the project collaborators:

Colleagues:	A. Elsherbeni	J. Huang	Y. Rahmat-Samii	G. Boreman
	H. Xin	S. Xu		
Students:	A. Yu	Y. Kim	B. Devireddy	T. Elsherbeni
	P. Nayeri	Y. Mao	A. Abdelrahman	F. Guo
	W. An	S. Cheng	X. Liu	

> Thanks to the project sponsors:

- NASA: MSSGC, EPSCoR
- National Science Foundation (NSF)
- Chinese High-Tech Research and Development Plan

Thanks!

