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Single photons from single emitters 

Single emitter 
Quantum dot, molecule 

photon photon 

Challenges: (1) Surely catching each photon in a single beam 
          (2) Surely absorbing each photon from a beam 

Addressing and seeing single molecules with unit efficiency   
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Motivation 

Optical microscopy 
Below λ/2 limit 
 
 
Single molecules 
Information from 
fluctuations 

Spectroscopy of 
molecules 
 
 
Distance ruler, 
vibrations 
THz, IR and VIS 

Liu & Alivisatos Bates & Zhuang [PALM, STORM] 

Single photon sources 
Quantum information 
Quantum communication 
 
Quantum information 
in 1 photon can  
not be eavesdropped 

F. Koenderink  -EuCAP 2013 



Enhancing photon-emitter interaction 

 
 

Cavity resonances 

Enhanced interaction time ∝ Q 
Enhanced |E|2 per photon ∝ 1/V   

 
Limit on V  > (λ/2) 3 
Hence    Q  > 104  
 
 

 

λ ≈ 1 meter 

Antennas 

Very broadband:  Q ≈  5 
Strongly scattering, open system 
 
Strong local field due to metal 
V ≈ (λ/50)3     
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Famous reported optical antennas 

 
 

W. E. Moerner 2009 
Nature Photonics  

‘Bow-tie’ antenna ‘λ/4’ antenna 

Van Hulst 2008 
Nature Photonics  

Self-similar trimer 
Bidault & Polman  
2009, JACS 

Yagi-Uda antenna 
Van Hulst/Quidant 2010 
Nature Photonics  

 
 

E-beam lithography 
Focused Ion Beam milling 
DNA-aided selfassembly 
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Scattering resonance 

 
 

 
 

Murray & Barnes, Adv Mat 2007 

Cross section 
 >  
 geometric area 
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Plasmon resonance  Figures of Merit 
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Circa 103-104 free electrons 
 
Incident field separates e- from ionic 
backbone 
 
Linear restoring force implies a 
resonance 
 
Resonant dipole scatterers  
λ ~300-1000 nm,  Q ~ 5-30 
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•  Color tunable in visible 
 
•  Cross section ~  10x πr2 

 

•   Strong dipolar near field 
 

•  Q ~5 means 95% of loss 
    is radiation into free space 
  
•   σ and α at upper bound:  
      
    unitary limit 
     (Chu limit)  
 
 
 
 

2

2
3 λ
π

σ ≈

 
 

500 550 600 650 700
0.00

0.01

0.02

0.03

 

 

Ex
tin

ct
io

n 
cr

os
ss

ec
t. 

(µ
m

2 )

Wavelength (nm)

|E|2/|Ein|2 

30 nm Ag particle in glass 

General properties 

Plasmon particle is a solid state `strongest point-scatterer’ 
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- Far-field: photon with 90% probability in a narrow beam 
- Broadband (> 300 nm bandwidth in the visible)  
- 90% chance that the photon is not lost to heat 

 Yagi-Uda 

1 micrometer 

Quantum emitter 
 λ = 650 nm 

de Waele Nano Lett 2007 / Koenderink Nano Lett 2009 / Curto Science 2010, Coenen Nano Lett. 2011  

100 nm silver nanospheres 

Snap shot of electric field 



Single quantum emitter 
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•  After one excitation, emits just one quantum of light 
•  Probabilistic timing of when emission occurs 
•  Spatial and temporal coherence of single photon wavepackets 
•  No such thing as setting up multiple coherent active elements 

Laser 
pulses 

Hits on 
detector 

Hits on 
APD 2 

Time 
 

S0 

S1 

Time (ns) 
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Fermi’s Golden Rule 

 
 

1) Dipole antenna 
2) Ground plane 

 
Optics: 
 
“Drexhage experiment” 
 
Emitter in front of mirror 
 
(Drexhage, 1968) 
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APD 

Objec-
tive 

Scanning mirror ‘Drexhage experiment’ 

• 25µm PS bead covered with 400nm Ag as mirror 
 

• PS bead glued to cleaved  fiber 
 

• Lateral scanning in shear force varies  emitter-mirror distance 

Method pioneered by B.C. Buchler et al. Phys. Rev. Lett. 95, 063003 (2005) 



Calibration example – single NV center 
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•   Single  NV center in a 100 nm nanodiamond (MicroDiamant AG) 
•   Decay rate varies with distance to the mirror 
  radiative decay rate  ⇔   radiative impedance 
                    nonradiative decay rate  ⇔  Ohmic resistance 
  
 A. Mohtashami  & M. Frimmer APL, New J Phys (2013) 
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Scanning LDOS microscope 

 
 

Reversible control of light-matter coupling for any nano-structure 

Nanoscale imaging LDOS changes in Fermi’s Golden Rule 

 

 

NSOM tip +  
100 nm bead 

300 nm Ag 

Frimmer et al., Phys. Rev. Lett. 107 123602  (2011) 
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Motivation 

Optical microscopy 
Below λ/2 limit 
 
 
Single molecules 
Information from 
fluctuations 

Spectroscopy of 
molecules 
 
 
Distance ruler 
Vibrations 
THz, IR and VIS 

Liu & Alivisatos Bates & Zhuang [PALM, STORM] 

Single photon sources 
Quantum information 
Quantum communication 
 
Quantum information 
in 1 photon can  
not be eavesdropped 
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Microscopy & antennas 

 
 

“Fluorescence correlation spectroscopy” 
Photon correlations reveal density and diffusion constant of an analyte 
 
Problems:  requires < 1 molecule per focal volume 

Transit time through focus 

F. Koenderink  -EuCAP 2013 



Microscopy & antennas 

 
 

“Fluorescence correlation spectroscopy” 
Photon correlations reveal density and diffusion constant of an analyte 
 
Problems:  requires < 1 molecule per focal volume 

Transit time through focus 

A 

Pioneered by 
Levene et al.  [2003] 
Wenger et al.  [2005]   

A single nano-aperture  
confines  
geometrically for FCS 
 
Plasmonic enhancements 
increase count rates 
and brightness 
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Phased array 

 
 

Collaboration with Institut Fresnel, Jérôme Wenger  -  Alexa 647 dye , 1 uM in water 

140 nm holes/150 nm  
Au film/440 nm pitch 
 
We only pump molecules         V ~ λ3/20 
in the central hole 

FCS correlation 1.3 
3 molecules/focus 
 
 

Fluorescence 
lifetime 
 
Circa 2-fold 
enhanced 
 
 



Fourier images – angular distribution 

 
 

Emission only comes from the central hole 
Yet, enhanced directivity and total strength (4 to 5 times) 
    Plasmonic-crystal band edge phased array antenna 

kx~ sin θ 

Langguth, Punj, Wenger, Koenderink, submitted (2013) 



Phased array physics 

 
 

The gold film supports  a surface plasmon  guided moded [ kSPP] 
Direct photon + amplitude scattered from each hole with phase 
 
Radiation pattern can be controlled via  lattice parameter 
Around 2nd order plasmon diffraction (near dispersion band edge)  
 
 
 

- - ++ - - ++ 
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Phased array physics 

 
 

The gold film supports  a surface plasmon  guided moded [ kSPP] 
Direct photon + amplitude scattered from each hole with phase 
 
Radiation pattern can be controlled via  lattice parameter 
Around 2nd order plasmon diffraction (near dispersion band edge)  
 
 
 

- - ++ - - ++ Plasmon phased arrays improve single molecule brightness 
and directivity, as well as emission rate 
 
Also: 
-  Yagi Uda + single quantum dot   [Curto et al., Science 2010] 

-  1D chain antenna receiver [de Waele et al., Nano Lett. 2007] 

-  2D infinite lattices to improve LED extraction   
         [G. Vecchi et al., PRL 2007, LED’s] 

-  Bull’s eyes around holes       [Wenger et al., Nano Lett. 2012, FCS]  
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Motivation 

Optical microscopy 
Below λ/2 limit 
 
 
Single molecules 
Information from 
 fluctuations 

Spectroscopy of 
molecules 
 
 
Distance ruler 
Vibrations 
THz, IR and VIS 

Liu & Alivisatos Bates & Zhuang [PALM, STORM] 

Single photon sources 
Quantum information 
Quantum communication 
 
Quantum information 
in 1 photon can  
not be eavesdropped 
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Complex world 

 
 

Yagi – Uda ON a waveguide 
Full scattering study:   
Bernal, ACS Nano 6 10156 (2012) 
 
Fundamental question:  antenna in a nontrivial mode bath ? 
Key parameter:  decay rate enhancement (Purcell factor) 

Cavity-assisted plasmonics 
  

F. Koenderink  -EuCAP 2013 



Simplest possible “dipole”antenna 

• Au colloid on dye doped PMMA layer on glass 
• O2 plasma removes dyes layer except under colloid 

Similar method to:  Sorger et al., Nano Lett. 11, 4907 (2011) 

glass 
PMMA:dye 

Au 

O2 



Superemitter - polarization 

CCD 

• Unpolarized:   donut-shaped image  
• Polarization analyzed:  double lobes 

 
 Superemitter dipole moment along optical axis 

 

scattering fluorescence 
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Superemitter - lifetime 

APD 

• TCSPC-FLIM measurement (pump 532 nm, 10 MHz) 
 

• Antenna rate enhancement ca. 3x compared to bare dye layer 

F. Koenderink  -EuCAP 2013 



Zero order idea 

 
 

200 nm 

Antenna dominates molecular dipole 
 
Classically, the radiated power of a  
dipole scales with |p|2 

 
Decay rate change =   1 / Zantenna ~    

F. Koenderink  -EuCAP 2013 



Hybrid systems – lumping LDOS 

 
 

Polarizable nanoparticle  
in near-field of molecule 
 
  

System 1: Super-emitter System 2: ground plane 

What happens to the joint radiative impedance,  given that I know 
the radiative impedance change offered by antenna  and ground plane ? 
 

Greffet et al. Phys. Rev. Lett. 105, 117701 (2010)  -  LDOS  as impedance 
Benson, Nature 480, 193 (2011) 
 



APD 

Objec
-tive 

Decay rate at superemitter shows characteristic variations 
Mirror LDOS modifies the already antenna-accelerated decay 
  

Scanning mirror ‘Drexhage experiment’ 

3-fold 

Experiment: Frimmer, arxiv: 1212.6396 (under review Phys Rev) 



Scanning mirror ‘Drexhage experiment’ 

3-fold 

Lumped system Purcell factor  is clearly not simply a multiplication   
 
  
 

Inverse effect confirmed by full dyadic Green function calculation. 
 

(ZAntenna x Zmirror) 

(ZAntenna / Zmirror) 

F. Koenderink  -EuCAP 2013 



How an antenna gets spoiled 

 
 

molecule 

α (ω) 

mirror dipole 

Fixed current sources:   twice the dipole moment radiates twice as much 
    quantum emiter: doubled decay rate  

 
Scatterer:   at twice the radiative loss, the scatterer p is much weaker 
         polarizability is spoiled / Chu limit changed by the mirror 
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Theory:  Frimmer PRB 86 235428:1-6 (2012). 



Complex world 

 
 

Yagi – Uda ON a waveguide 
 
Current effort:  practical Q, i.e., Q = 100, structures of antenna + cavity 
 Separate regimes where cavities aid or spoil antennas 
 
 Radiative impedance lumping in complex systems 

Cavity-assisted plasmonics 
  

F. Koenderink  -EuCAP 2013 
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Handedness 
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αE ~ 103αEH ~ 106αH 
 
Almost only electrically polarizable 
Very weak magnetic moment,  induced by electric driving  
  

Perturbative effect: optical activity, circular dichroism, optical rotation 
 
Ubiquitous & biochemically of huge impact  - optically weak 

E EH

HE H

i
i
α α
α α

    
=     −    

p E
m H
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Resonant nano-scatterers 

Resonant electric dipoles Resonant magnetic dipoles 

Electron beam lithography down to  20 nm with <5 nm error 

Charge separation:   electric dipole moment 
Current loop:            magnetic dipole moment 
 
Noble metal U-shaped particles:    LC resonators `split rings’ 
Pendry & Smith, Linden & Wegener, Giessen 
 
 



Resonant nano-scatterers 

Electron beam lithography down to  20 nm with <5 nm error 

Split ring:  E-field charges the split – with a quarter phase lag the  
       split discharges, giving rise to a magnetic dipole  
 
The same polarizability tensor as for chiral molecules, but with 
 
   αE ~ αEH ~ αH ~ V ~ λ3

   
 
 
 

E EH

HE H

i
i
α α
α α

    
=     −    

p E
m H



Superchiral spectroscopy 

36 

Hendry, Exeter 
Tang & Cohen, Harvard 
Schaferling & Giessen, Stuttgart 
 

 
 

Single molecule enantioselective detection  ‘superchiral’fields 
 
Selectively exciting, and spoofing emitters with nontrivial  
selection rules – spin & orbital angular momentum antennas 

F. Koenderink  -EuCAP 2013 



Not chiral – pseudo chiral 
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Pseudochirality 
 
Huge optical activity – though split rings are not chiral at all 

Sersic, PRL 108 , 223903:1-5 (2012) 



How can an LC circuit / SRR be chiral ? 

 
 

Geometrically  a SRR is not 2D or 3D chiral 
 
Obliquely, the SRR looks line one turn 
of a screw – COULD be optically active 

Existence of “pseudochirality”:  Plum & Zheludev 

Quantitative fit  of α to many angle resolved spectra:  
 
 
 

HEC ααα 88.0~

Strong scattering: α around 50% of unitary limit 
Hugely optically active or “bi-anisotropic” 

 
 
 

VVV CHE 4.3,3.2,7.5 === ααα



Quantitative fit  of α to  
 
 
 

HEC ααα 88.0~

VVV CHE 4.3,3.2,7.5 === ααα

Strong magnetic scatterers 
For one handedness, transmission resonance almost disappears entirely 

Fit of polarizability 

Sersic, PRL 108 , 223903:1-5 (2012) 

α around 50% of unitary limit 
 
 
 



Phase diagram 

 
Almost all  meta-scatterers we tested are maximally  cross coupled 
Reason:   free charges generate p and m – bound by continuity  
        
  

Plasmonics 

2 
3 4 5 

6 

7 

9,10 

8 

Method (1):  α-retrieval:  Mühlig et al.,  Metamaterials 5, 64 (2011). 
         (2):  full-field:     Kern & Martin , J. Opt Soc. Am. A vol. 26, p. 73 (2009) 
 



 
 

Conclusions 

Liu & Alivisatos Bates & Zhuang [PALM, STORM] 

Antenna physics at optical wavelengths: 
• Plasmonics instead of perfect metals 
• Quantum emitters & single photons instead of I, V, Z 

Phased arrays + radiative impedance conzrol enable 
Phased array physics + radiative impedance + spoof magnetism 
Brighter microscopy, quantum optics, spectroscopy & LEDs   
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