MIMO Propagation Channel Modeling

Ernst Bonek

EuCAP 2013 Göteborg April 2013

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

The Multiple-Input Multiple-Output (MIMO) Channel

A MIMO system consists of **several antenna elements** at both transmitter and receiver, plus **adaptive signal processing**; this combination exploits the **spatial** dimension of the **radio propagation** channel.

MIMO Channel Matrix *H*

Consists of $M \ge N$ impulse responses h_{ij} of transmit antenna j to receive antenna i $\mathbf{H}(t,\tau,\varphi) = \begin{bmatrix} h_{11}(t,\tau,\varphi) & h_{12}(t,\tau,\varphi) & \cdots & h_{1N}(t,\tau,\varphi) \\ h_{21}(t,\tau,\varphi) & h_{22}(t,\tau,\varphi) & \cdots & h_{2N}(t,\tau,\varphi) \\ \vdots & \vdots & \ddots & \vdots \\ h_{M1}(t,\tau,\varphi) & h_{M2}(t,\tau,\varphi) & \cdots & h_{MN}(t,\tau,\varphi) \end{bmatrix}$

Time tSignal delay τ Angular dependence φ

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

Outline

Modeling Philosophies

- random or deterministic channel?
- individual multipath or MIMO matrix?

MIMO Measurements

Two Models

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

Deterministic vs random MIMO channels

In general, the MIMO channel is *random*.

- A snapshot of the MIMO channel is a single *deterministic* realization of the random MIMO channel.
- Deterministic and random MIMO channels have to be treated quite differently!
- We model the channel for network planning and deployment: as deterministic, site-specific by Maxwell, UTD,...

We model the channel for system design and testing: as random, scenario-specific – by statistics (distribution & moments)

Sources of MIMO Randomness

Sources of MIMO Randomness

Common mistakes in MIMO channel modeling

- Make ONE model from measurements in different, albeit stationary scenarios
- Make ONE model, believed to be stationary, from measurements in non-stationary scenario
 (Correction due to J.-C. Oestges' question)
- AVERAGE channel that never exists

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

What to model?

A. Electromagneticpropagation in detail=> multipath

scattering objects path loss (de-)polarization, XPD angular distribution temporal evolution Doppler ... and eventually *H*, the MIMO channel matrix

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013* Ernst Bonek 10

B. MIMO channel matrix *H* directly

Geometry-based stochastic channel modeling (GSCM)

- If A: deterministic ray-tracing or random scattering objects?
- Compromise: Geometry-based Stochastic Channel Modeling (GSCM)
- Select sample scenarios
- Prescribe *probability density function* of near-by scatterers
- Prescribe regions of distant scatterers such as high-rise building groups or mountains (fixed in space)
- Simple ray tracing with specular reflection
- Excellent for time evolution and interference modeling

Outline

Modeling Philosophies

MIMO Measurements

- massive postprocessing
- double-directional channel
- clusters
- diffuse multipath
- ... and common mistakes

Two Models

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

Measurement equipment

Elektrobit Oy

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013* **Superresolution Estimation of Multipath Components**

- Massive signal processing
- Direction finding by
- ESPRIT, MUSIC, SAGE, RIMAX,...

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

The Double-directional Propagation Channel

M. STEINBAUER, COST259 TD(98)027, Feb.1998, Berne, Switzerland M. STEINBAUER et al., IEEE VTC-2000-Spring, Tokyo, May 15-18, 2000 M. STEINBAUER et al., IEEE AP Magazine, August 2001, pp. 51-63

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

Backyard - OLOS: Tracing Individual Multipath

EuCAP 2013, Göteborg, April 2013

Backyard - OLOS: Power Delay Profile

Observed MIMO effects

- DOA depends on DOD => double-directional
- DOAs and DODs different for different delays
- Strong discrete multipath components, which appear in
- Clusters...
- plus diffuse power
- As a consequence, MIMO exhibits
 - extremely high local variation
 - time dependence
 - frequency-selectivity

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

Diffuse Multipath Component DMC

A. Richter, PhD thesis, TU Ilmenau, 2005

- Discrete multipath does not fully account for power delay profile
- "diffuse" remainder due to multiple small scattering contributions
- not noise!

Multipath Clusters

• **Clusters** modify the temporal and angular dispersion:

- Global dispersion parameters:
 - rms delay spread
 - (total) rms angular spreads (*"composite AS"*)
- Cluster dispersion parameters:
 - cluster rms delay spread
 - cluster rms angular spreads (*"intra-cluster AS"*, *"component AS"*)

Outline

Modeling Philosophies

MIMO Measurements

Two Models - WINNER II

- why-sell-burgers?

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

WINNER II: MIMO link with details

WINNER Channel Model for 4G evaluations

- A Geometry-based Stochastic Channel Model
 - as 3GPP SCM, COST 273, etc. models.
- Based on extensive measurements in WINNER (+ literature).
 - Parameters for more than 10 propagation environments
 - Two levels of randomness
 - for system-level modelling
- Carrier frequency range 2 6 GHz
- Bandwidth 100 MHz
- Drop-based time evolution
- Selected by ITU-R for IMT-Advanced validation (4G)
- COST 2100 => MIMO Multilink Model

Model MIMO matrix directly (Plan B)

Advantageous for system simulations

- when Rx and Tx arrays already have been specified (N,M, d, polarization,...)
- when we need to produce a set of MIMO matrices

We treat *H* as a random variable

- completely random? No, correlation comes into play
- Correlation of sub-channels as a consequence of both
 - the antenna arrays and
 - the propagation environment
- In MIMO it is always a correlation between sub-channels, not antenna signals!

Full CSI, partial CSI, no CSI?

- no CSI: full correlation matrix $R_{\rm H}$ matters

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013* Ernst Bonek 25

 $M \cdot N \times M \cdot N$

Modeling the correlation matrix R_H

1. No correlation between any two elements of H

$$R_{H} = I_{MN}$$
 $H = H_{u}$ (i.i.d., "rich scattering")

[why]-[sell]-[burger] model

Weichselberger et al., IEEE Trans Wireless Comm, 2006

- The [why]-[x]-[sell]-[burger] model is based on MIMO eigenmodes
- models the channel by a coupling matrix Ω of transmit an receive eigenmodes
- accounts for joint correlation of Tx and Rx sides
- reveals which MIMO scheme is best in a given environment
- has been proven independently to render mutual information (,,capacity"), diversity order,... better than any other model so far
- in any environment (in-, outdoor, LOS)
- at any frequency 0.3 through 5.8 GHz

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

Weikendorf 34, TX diversity, RX beamforming

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

Weikendorf 32, multiplexing up to 5 streams

ftw.

MIMO Propagation Channel Modeling EuCAP 2013, Göteborg, April 2013

Weikendorf 1, beamforming at RX and TX

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

What is a good MIMO channel model?

Let's look on some metrics

• Which effect?

A myth: "Capacity is a sufficient metric for deciding whether a MIMO model is good or not"

- All MIMO models I have seen render ergodic capacity within + - 20% correctly
- So what does *agreement* of modelled and measured capacities tell us?
- Not very much!

Ergodic MIMO capacity is a **necessary** but neither a **sufficient** nor a **sensitive** metric.

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

Open challenges

- Diffuse multipath
- Vehicle-to-vehicle
- Body-area networks
- Over-the-air (OTA) MIMO terminal testing

"Didn't we have already enough channel research?"

No, we have been interested in the *average* channel, but in the future we will have to be interested in the MIMO channel *here and now*.

Link to collection of NEWCOM++ MIMO measurements <u>https://portal.ftw.at/workspaces/channeldb/</u> measurements

MIMO Propagation Channel Modeling *EuCAP 2013, Göteborg, April 2013*

