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INTRODUCTION

Why do uncertainty analysis?
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In general, the result of a measurement is only an
estimate of the value of the quantity subject to
measurement (the measurand) and the result is complete
only when it is accompanied by a quantitative statement
of its uncertainty.

0 ,A A A  

where A0 is the best estimate and ΔA is the uncertainty.
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The error is the difference between the true value and
the measured value.  The true value is unknowable so
the error is unknowable.  

0 tError A A 

The uncertainty is the spread of values in which the true
value may reasonably be expected to lie.
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SOURCES of UNCERTAINTY in
 ANTENNA MEASUREMENTS

@ A good uncertainty analysis requires that all major sources
of uncertainty be identified. 
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Probe/reference antenna properties
Alignment/positioning

Receive system
Drift

Impedance mismatch
Leakage and crosstalk

Flexing cables
Multipath

Normalization
Non-uniform illumination
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Aliasing
Measurement area truncation

Antenna-antenna multiple reflections
Random errors (e.g., noise) 
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DISTRIBUTING ERRORS (ISO)
The ISO approach is to assume that by some means we have
knowledge of how the errors are distributed.  Let us note some
properties of distribution functions.

1. The variables x1, x2, ..., xn are independent only if the
distribution function is separable, i.e.,

1 2 1 1 2 2
1

( ) ( , ,..., ) ( ) ( )... ( ) ( ).
n

n n n i i
i

f x f x x x f x f x f x f x


  

2. The expectation value E of any function g(x) = g(x1,x2,...,xn) is

1 1 2 2 1 2( ( )) ... ( ) ( ) ( )... ( ) ...n n nE g x g x f x f x f x dx dx dx  
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Mean and Variance

The mean and variance of a linear function  are
1
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To make use of (1) and (2) for cases where y cannot be
written as a sum of other functions, we must linearize the
problem by using the first two terms of the Taylor series
expansion.  This will give us the familiar form for

(3)

2
2 2

1
i

n

y x
i i x

g
x



 
 

 
   


where the subscript  implies the derivative is evaluatedx 

at .
1 21 2, ,...,

nx x n xx x x    
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If the errors are large, one might be tempted to use the next term in
the Taylor series.  This is often problematic since the next term in the
Taylor series requires higher moments (see Appendix C), which may
not be well known, especially type B uncertainties.

In such cases, it usually makes sense to work directly with y rather
than its Taylor series expansion.
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Central Limit Theorem

It is often mistakenly asserted that if the number of error sources 
 then the distribution function approaches a normal distribution. n 

The following examples show that this is not a sufficient condition.

First, consider the function with distribution functions
101

1
i

i
y x




f1(x1)...f101(x101), with f1=...=f100 = the normal distribution with μ1=...=μ100=0
and σ1=...=σ100=σa.  f101= the rectangular distribution with μ101=0, and

σ101=10σa.  As expected, but the resulting distribution
101

2 2 2

1
200y i a

i
  



 
(see graph) is not a normal distribution.  Second, consider σ101=20σa with

 .  We have plotted these 2 curves plus a normal distribution2 2500y a 
against y/σy so they have the same normalized area and variance.
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What is the problem?

We have not satisfied the full set of criteria required for the
central limit theorem to be valid!  These criteria are

1. , 
1

n

i
i

y x



2. xi are random independent variables with distributions
fi(xi), 
3. for all xi, var(xi) is bounded,
4. n64,
5. var(y)64,lim

n
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then the limiting distribution of  is the standard normaly

y

y
f




 
  
 

distribution.

Criteria 3, 4, and 5 imply that var(y) >> var(xi) for all xi.  It is this
requirement that is not satisfied in the above examples.

Another example that does not satisfy the above criteria is: 

y =  and  var(xi) = ,
1

,
n

i
i

x



2
0

2i



Why?

The second order Taylor series also does not satisfy the requirements.
Why?
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One consequence of these requirements:

If there is a dominant source of uncertainty that is not
normally distributed, then it is difficult to associate a
confidence level with the value of  σ. 
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TYPE A and TYPE B UNCERTAINTIES

Type A uncertainties are those that can be estimated using
statistics (large number of measurements).  

Type B uncertainties are those that are estimated in any
other way.

The ISO guide indicates that confidence levels should not
be associated with the overall uncertainty in the presence of
type B uncertainties.
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ISO Method of Combining Uncertainties

We combine uncertainties as follows.

For type A uncertainties the overall uncertainty is

(4)
1

2

1
,

n

A i
i

u u


 
where ui is the standard deviation of the ith component.

For type B uncertainties

(5)
2

2

1
,

n

B j
j

u u


 
where uj is an estimate of the standard deviation for the distribution function
for the jth component.
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The overall uncertainty is

(6)2 2 .c A Bu u u 

The expanded uncertainty is

(7),cU Ku

where K is a coverage factor typically with a value of 2 or
3.  K = 2 is the value normally used in international
intercomparison measurements.
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Geometric Motivation for Combining Uncertainties

In the real world, we sometimes have large errors but poor
information about the distribution of the errors and we can
sometimes only estimate an approximate upperbound error.

If the errors are independent, then we can visualize that they
are orthogonal vectors in n-space. The resultant vector is the
root sum square (RSS) of the individual components.

We would not associate a confidence level with this result
(or any type B uncertainty).
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Systematic and Random Errors

Random error
ISO definition: The result of a measurement minus the
mean that would result from an infinite number of
measurements of the same measurand carried out under
repeatability conditions. [Compare this to a common definition
of: “uncorrelated from measurement to measurement.”]

Systematic error
The mean that would result from an infinite number of
measurements of the same measurand carried out under
repeatability conditions minus the true value of the
measurand.
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Corrected Measurement Result

The corrected (for systematic error) result of the measurement gives
the following estimate of the measurand VM

, (8)M sV e 





  

where es is the best estimate of the systematic error.
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METHODS OF ESTIMATING 
UNCERTAINTIES

1. Analytical Method

2. Simulation Method

3. Self-Comparison Method (Measurement) 
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We want to estimate the individual ui and uj in (4) and (5). 
We do not necessarily need to know  or  in (3) to do

j

y
x

 jx

this.  Instead, we may be able to estimate  directly
2

2
ix

i

y
x


 
  

using one of the methods above.
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ANALYTICAL METHOD

We use our knowledge of the theory to develop equations to provide
estimates of uncertainty.

Advantages: More generally apply; Valid for many situations; Can identify
upper-bound uncertainties.

Limitation: Some estimates, particularly worst-case estimates, of uncertainty are
unrealistically high.

Example: In planar near-field measurements, we assume a periodic probe-
position error to obtain an equation to estimate the uncertainty due to probe-
position errors. This provides an upper-bound error.  Periodic position errors
cause larger (than non-periodic) errors in the pattern but are concentrated in two
directions. Other types of position errors give smaller pattern errors but spread
them out over more of the pattern (see Yaghjian).
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( , ) 13.5 cos ( , ),
( , )

e z
B

dB

F g
F
    
  

   
 

where Fe and F are the pattern with and without errors respectively, 
g(θ,φ) is the ratio of the peak far-field pattern to the pattern value in
the θ,φ  direction and is greater than 1.  ΘB is the direction of the peak
far-field pattern, and δz is the maximum z-position error. 
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SIMULATION METHOD

We use a simulation to model an error and estimate its effect on the
result.

Advantage: Study individual errors; Use measured or ideal data; Can
study many cases.

Limitation: Must assume the form of the error; Results are not general.

Example: We model a receiver non-linearity effect by assuming the
receiver output has additional terms than the linear term such as 

Output = c1*input + c2*(input)2,

and then see how this affects the result.
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SELF-COMPARISON METHOD

We change the measurement system in a controlled manner to change
the error in some known way.

Advantages: Directly measure some uncertainties; Can verify
simulation and theory; Applies to actual measurement system.

Limitation: Time consuming; Results are not general.

Example: Multiple reflections between the antenna under test and the
probe have period of λ/2 in the separation distance.  By changing the
separation distance by λ/4 we can change the multiple reflections
from in phase to out of phase.  By comparing the pattern and gain
results from both measurements we can estimate the uncertainty due
to multiple reflections.
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EXAMPLE
ULSA ARRAY PATTERN UNCERTAINTIES

UNCERTAINTY SOURCE           UNCERTAINTY LEVEL
(Relative to peak)

Antenna-antenna multiple reflections 2.8e-04
Multipath (room scattering) 1.6e-04
Flexing cables 1.6e-04
Alignment / positioning errors 9.0e-05
Leakage   9.0e-05
Noise / Random errors 9.0e-05
Measurement area truncation 1.6e-05
Aliasing   1.6e-05
Receive system non-linearity 5.0e-06

ROOT SUM SQUARE 4.0e-04
Expanded uncertainty (K=2) 7.9e-04



M. H. Francis U.S. Natl. Inst. Stand. Tech. EuCAP 201335

SIDELOBE LEVEL Expanded Uncertainty in dB

    -30 dB ±.22
    -45 dB +1.1 -1.3
    -55 dB +3.2 -5.1
    -60 dB +5.1 -13.6
    -62 dB +6.0   - 4
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Measurement Intercomparison

Since there can be much subjectivity in evaluating type
B uncertainties, some intercomparison measurements
are necessary as a reality check!  

Measurements from different ranges should agree to within
the combined uncertainties.  That is, the uncertainty bars
should overlap.
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CONCLUSION

C “Rigorous uncertainty analysis” is an oxymoron! 
If it were rigorous, it would not be uncertain.

C A measurement is incomplete without an
uncertainty analysis.



M. H. Francis U.S. Natl. Inst. Stand. Tech. EuCAP 201339

References

  1. International Organization for Standards, "Guide to the
Expression of Uncertainty in Measurement," revised 2008. 

  2. Taylor, B.N. and Kuyatt, C.E., “Guidelines for Evaluating and
Expressing the Uncertainty of NIST Measurement Results,” NIST
Tech. Note 1297, 1994.

  3. Miller, I and Miller, M. John E. Freund’s Mathematical Statistics,
6th ed., Prentice Hall, 1999.

  4. Newell, A.C., "Error Analysis Techniques for Planar Near-Field
Measurements,"  IEEE Trans. Antenna Propagat., AP-36, pp 755-
768, June 1988.



M. H. Francis U.S. Natl. Inst. Stand. Tech. EuCAP 201340

  5. IEEE Standard 1720-2012, “Recommended Practice for Near-
Field Antenna Measurements,” Clause 9, December 2012.

  6. Francis, M.H.; Newell, A.C.; Grimm, K.R.; Hoffman, J.; and
Schrank, H.E., “Comparison of Ultralow Sidelobe Antenna Far-
Field Patterns Using the Planar Near-Field Method and the Far-
Field Method,” IEEE Antenna Propagat. Mag., vol. 37, pp. 7-15,
Dec. 1995.  

  7. Wittmann, R.C.; Alpert, B.K. and Francis, M.H., “Near-Field
Antenna Measurements Using Nonideal Measurement Locations,”
IEEE Trans. Antenna Propagat., vol. AP-46, pp.716-722, May
1998.



M. H. Francis U.S. Natl. Inst. Stand. Tech. EuCAP 201341

  8. Yaghjian, A.D., “Upper-Bound Errors in Far-Field Antenna
Parameters Determined from Planar Near-Field Measurements
Part 1: Analysis,” Natl. Bur. Stand. Tech. Note 667, October
1975.

 9. Joy, E.B., “Near-Field Range Qualification Methodology,” IEEE
Trans. Antenna Propagat., vol. AP-36, pp.836-844, June 1988.

10. Wittmann, R.C.; Francis, M.H.; Muth, L.A. and Lewis, R.L.,
“Proposed Uncertainty Analysis for RCS Measurements,” US
Natl. Inst. Stand. Tech. Int. Rep. NISTIR 5019, Jan. 1994.

 



M. H. Francis U.S. Natl. Inst. Stand. Tech. EuCAP 201342

APPENDICES
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APPENDIX A 
Linear Sums of Random Variables

If  with distribution functions  then the
1
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 1 1 2 2( ), ( ),..., ( )n nf x f x f x
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    22
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The second term in the square brackets is zero when xi and xj are
independent. Thus,
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APPENDIX B
Taylor Series to First Order

If  are independent random variables with1( ,..., ),ny g x x 1,..., nx x
distribution functions  and we expand g in a Taylor series to1 1( ),..., ( )n nf x f x

first order, then  and .
1
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First, we expand g in a Taylor series about the mean values of x1, ..., xn, then

 11
1

( ,..., ) ( ,..., )
n i

n

n x x i x
i i x

gy x x g x
x



  
 

 
    





M. H. Francis U.S. Natl. Inst. Stand. Tech. EuCAP 201347

Then
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APPENDIX C
Taylor Series to Second Order

Consider the case of Appendix B but expanding to second order in the
Taylor series.  Find  and .y
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Since  and  then the first term is zero( ) 0
ii xE x   2 2(( ) )

i ii x xE x   
unless i=j, the second term is zero unless i=j=k, the third term is zero, the
fourth term is zero unless k=i (j), R=j (i) and the fifth term is zero unless i=j. 

Thus
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  

22 2 2
32 2 2 2
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1 1

22 4 4
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i i i j ii i i i jx x x

i x x
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g E x
x

  
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    

 

    



                            

 
   

  





M. H. Francis U.S. Natl. Inst. Stand. Tech. EuCAP 201353

Note that there are third order Taylor series terms of the form

 which are of the same order as terms in the
3

2 2
2 i jx x

i i jx x

g g
x x x

 

 
 

   
         

above equation.
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APPENDIX D
Mean and Variance for Selected Distributions

Normal distribution
21

2

2 2
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f x e




 

 
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


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Exponential distribution
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Binomial distribution
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Chi-squared distribution with ν degrees of freedom

2
2 2

2

2

( )
2

2

2

x

x

x

x ef x



 

 

 

 
 

 


  
 







M. H. Francis U.S. Natl. Inst. Stand. Tech. EuCAP 201358

Rectangular distribution
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U distribution
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